Back to top

G-Quadruplex

Oligonucleotide structural analysis has demonstrated that DNA and RNA nucleic acid sequences containing G-tracts separated by other bases spontaneously fold into G-quadruplex structures. G-quadruplexes are formed when four adjacent guanine residues stack in a cyclic Hoogsteen hydrogen-bonding arrangement leading to four-stranded helical structures. The study of G-quadruplexes in basic genetic processes is an active area of research in telomere, gene regulation, and functional genomics research. Guanine analogues that have different hydrogen bonding characteristics - 7-deaza-8-aza-dG and 7-deaza-dG - have proved useful in analyzing G-quadruplex structures. Similarly, common DNA lesions - 8-oxo-dG and abasic sites - have been used to investigate their effect on G-quadruplex structure and activity.

View as List Grid
per page
Set Descending Direction
Narrow by
  1. Sugar Type deoxyribose Remove This Item
View as List Grid
per page
Set Descending Direction